Fractions: Bubble Blast

Aim:
Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams.

I can multiply mixed numbers by whole numbers.

Success Criteria: I can show that multiplication is the same as repeated addition. I can use fraction diagrams to multiply fractions by whole numbers. I can convert between improper fractions and mixed numbers.	Resources: Lesson Pack
Khiteboards and pens - class set Key/New Words: Fraction, numerator, denominator, mixed number, whole number, partitioning, improper fraction.	Preparation: Bubble Blast Activity Sheets - one per child

Prior Learning:
It will be helpful if children can multiply proper fractions by whole numbers and convert between improper fractions and mixed numbers.

Learning Sequence

Multiplying Proper Fractions: Use the text and diagrams shown on the Lesson Presentation to demonstrate how
repeated addition of a proper fraction can also be represented as multiplying a proper fraction by a whole number.
Identify that the denominator remains the same and just the numerator is multiplied by the whole number.

Exploreit

Storyit: Ask the children to create word problems to match calculations which involve multiplying fractions by whole numbers.
Rollit: Roll a dice three times to generate different numbers. Arrange the numbers into a 'multiplying fractions by whole numbers' calculation to calculate. Convert the answer from an improper fraction to mixed number if necessary.

Maths
)

Fractions

Bubble Blast

Regent Studies | www.regentstudies.com

Aim

- I can multiply mixed numbers by whole numbers.

Success Criteria

- I can show that multiplication is the same as repeated addition.
- I can use fraction diagrams to multiply fractions by whole numbers.
- I can convert between improper fractions and mixed numbers.

Fraction Bubble Burst

Pop the bubbles which are proper fractions.

Fraction Bubble Burst

Pop the bubbles which are improper fractions.

Fraction Bubble Burst

Pop the bubbles which are mixed numbers.

Multiplying Proper Fractions

Multiplying a fraction by a whole number is the same as repeated addition.

The numerator is multiplied by the whole number.
$2 \times 5=10$

The denominator is multiplied by one.
$7 \times 1=7$

-

Multiplying Proper Fractions

There are different strategies to multiply a mixed number by a whole number. One strategy is repeated addition.

Multiplying Mixed Numbers

To multiply a mixed number by a whole number, you can also change the mixed number into an improper fraction.

Multiplying Mixed Numbers

To multiply a mixed number by a whole number, you can also change the mixed number into an improper fraction.

Multiplying Mixed Numbers

Another strategy to multiply a mixed number by a whole number is to partition the whole and the fraction.

Fraction Flowers Bingo

I can multiply mixed numbers by whole numbers.

Blast the bubbles by matching the correct bubble to the calculation.

Diving into Mastery

Dive in by completing your own activity!

Aim

- I can multiply mixed numbers by whole numbers.

Success Criteria

- I can show that multiplication is the same as repeated addition.
- I can use fraction diagrams to multiply fractions by whole numbers.
- I can convert between improper fractions and mixed numbers.

Regent Studies \| www.regentstudies.com

Bubble Blast

I can multiply mixed numbers by whole numbers.

000

Bubble Blast Answers

I can multiply mixed numbers by whole numbers.

Blast the bubbles by matching the correct bubble to the calculation.
000

$\begin{aligned} & 5 \frac{4}{8} \\ & 2 \frac{2}{4} \end{aligned}$	$6 \frac{2}{3}$ $3 \frac{1}{3}$	$3 \frac{3}{6}$ $5 \frac{3}{6}$	$8 \frac{1}{3}$ $4 \frac{7}{8}$ $5 \frac{3}{5}$
$1 \frac{1}{3} \times 4=\frac{4}{3} \times 4=\frac{16}{3}=5 \frac{1}{3}$	$1 \frac{1}{4} \times 5=\frac{5}{4} \times 5=\frac{25}{4}=6 \frac{1}{4}$	$1 \frac{1}{3} \times 5=\frac{4}{3} \times 5=\frac{20}{3}=6 \frac{2}{3}$	$1 \frac{3}{4} \times 3=\frac{7}{4} \times 3=\frac{21}{4}=5 \frac{1}{4}$
$1 \frac{1}{6} \times 3=\frac{7}{6} \times 3=\frac{21}{6}=3 \frac{3}{6}$	$1 \frac{3}{8} \times 4=\frac{11}{8} \times 4=\frac{44}{8}=5 \frac{4}{8}$	$1 \frac{5}{6} \times 3=\frac{11}{6} \times 3=\frac{33}{6}=5 \frac{3}{6}$	$1 \frac{5}{8} \times 3=\frac{13}{8} \times 3=\frac{39}{8}=4 \frac{7}{8}$
$1 \frac{1}{5} \times 2=\frac{6}{5} \times 2=\frac{12}{5}=2 \frac{2}{5}$	$1 \frac{2}{3} \times 2=\frac{5}{3} \times 2=\frac{10}{3}=3 \frac{1}{3}$	$1 \frac{2}{5} \times 4=\frac{7}{5} \times 4=\frac{28}{5}=5 \frac{3}{5}$	$1 \frac{2}{3} \times 5=\frac{5}{3} \times 5=\frac{25}{3}=8 \frac{1}{3}$

Bubble Blast

I can multiply mixed numbers by whole numbers.

Blast the bubbles by matching the correct bubble to the calculation. Then, write your own calculations, multiplying a

Bubble Blast Answers

I can multiply mixed numbers by whole numbers.

Blast the bubbles by matching the correct bubble to the calculation. Then, write your own calculations, multiplying a mixed number by a whole number, for the two bubbles that are unpopped

$2 \frac{1}{3} \times 4=\frac{7}{3} \times 4=\frac{28}{3}=9 \frac{1}{3}$	$2 \frac{1}{4} \times 5=\frac{9}{4} \times 5=\frac{45}{4}=11 \frac{1}{4}$	$2 \frac{1}{3} \times 5=\frac{7}{3} \times 5=\frac{35}{3}=11 \frac{2}{3}$	$2 \frac{3}{4} \times 3=\frac{11}{4} \times 3=\frac{33}{4}=8 \frac{1}{4}$
$2 \frac{1}{6} \times 3=\frac{13}{6} \times 3=\frac{39}{6}=6 \frac{3}{6}$	$2 \frac{3}{8} \times 4=\frac{19}{8} \times 4=\frac{76}{8}=9 \frac{4}{8}$	$2 \frac{5}{6} \times 3=\frac{17}{6} \times 3=\frac{51}{6}=8 \frac{3}{6}$	$2 \frac{5}{8} \times 3=\frac{21}{8} \times 3=\frac{63}{8}=7 \frac{7}{8}$
$2 \frac{1}{5} \times 2=\frac{11}{5} \times 2=\frac{22}{5}=4 \frac{2}{5}$	$2 \frac{2}{3} \times 2=\frac{8}{3} \times 2=\frac{16}{3}=5 \frac{1}{3}$	Multiple answers possible.	Multiple answers possible.

Bubble Blast

I can multiply mixed numbers by whole numbers.

Blast the bubbles by matching the correct bubble to the calculation. Then, write your own calculations,

000

Bubble Blast Answers

I can multiply mixed numbers by whole numbers.

Blast the bubbles by matching the correct bubble to the calculation. Then, write your own calculations,

000

$2 \frac{1}{3} \times 7=\frac{7}{3} \times 7=\frac{49}{3}=16 \frac{1}{3}$	$2 \frac{1}{4} \times 7=\frac{9}{4} \times 7=\frac{63}{4}=15 \frac{3}{4}$	$2 \frac{1}{3} \times 7=\frac{7}{3} \times 7=\frac{49}{3}=16 \frac{1}{3}$	$2 \frac{3}{4} \times 5=\frac{11}{4} \times 5=\frac{55}{4}=13 \frac{3}{4}$
$2 \frac{1}{6} \times 5=\frac{13}{6} \times 5=\frac{65}{6}=10 \frac{5}{6}$	$2 \frac{3}{8} \times 5=\frac{19}{8} \times 5=\frac{95}{8}=11 \frac{7}{8}$	$2 \frac{5}{6} \times 5=\frac{17}{6} \times 5=\frac{85}{6}=14 \frac{1}{6}$	$2 \frac{5}{8} \times 7=\frac{21}{8} \times 7=\frac{147}{8}=18 \frac{3}{8}$
Multiple answers possible.	Multiple answers possible.	Multiple answers possible.	Multiple answers possible.

1) Accept any methods that children have correctly used to find the answer. Here is one method that they could have used:
a) $2 \frac{1}{4} \times 4=$

$$
\begin{aligned}
& 2 \times 4=8 \\
& \frac{1}{4} \times 4=1 \\
& 8+1=9 \text { litres of water }
\end{aligned}
$$

b) $4 \frac{2}{3} \times 4=$
$4 \times 4=16$
$\frac{2}{3} \times 4=\frac{8}{3}=2 \frac{2}{3}$
$16+2 \frac{2}{3}=18 \frac{2}{3}$ tablespoons of bubble mixture
2) a) $2 \frac{3}{5} \times 3<2 \frac{5}{10} \times 4$
$7 \frac{4}{5}<10$
b) $4 \frac{3}{4} \times 2<3 \frac{5}{6} \times 3$
$9 \frac{1}{2}<11 \frac{1}{2}$
c) $2 \frac{3}{4} \times 4>5 \frac{1}{4} \times 2$

$$
11>10 \frac{1}{2}
$$

1) Here are two possible solutions:

$$
\begin{aligned}
& 3 \frac{3}{4} \times 3=2 \frac{3}{12} \times 5 \\
& \frac{3}{4} \times 3=2 \frac{5}{8} \times 2
\end{aligned}
$$

2) $72 \frac{3}{8} \times 3=$
$72 \times 3=216$
$\frac{3}{8} \times 3=\frac{9}{8}=1 \frac{1}{8}$
$80 \frac{3}{4} \times 3=$
$80 \times 3=240$
$\frac{3}{4} \times 3=\frac{9}{4}=2 \frac{1}{4}$
$240+2 \frac{1}{4}=242 \frac{1}{4}$
3 baths a week would use between $217 \frac{1}{8}$ and $242 \frac{1}{4}$ litres of water.
$217 \frac{1}{8} \times 52=$
$217 \times 52=11284$
$\frac{1}{8} \times 52=\frac{52}{8}=6 \frac{4}{8}=6 \frac{1}{2}$
$11284+6 \frac{1}{2}=11290 \frac{1}{2}$
$242 \frac{1}{4} \times 52=$
$242 \times 52=12584$
$\frac{1}{4} \times 52=\frac{52}{4}=13$
$12584+13=12597$

12597 - $11290 \frac{1}{2}=1306 \frac{1}{2}$ litres

Taking a deep bath would use $1306 \frac{1}{2}$ more litres of water than taking a shallow bath.

1) Class 5 are exploring different methods of multiplying mixed numbers.
a) Shade the bar models to represent $3 \frac{2}{3} \times 4$.

b) Complete Theo's repeated addition calculation, giving the answer in its simplest form.
$3 \frac{2}{3} \times 4=$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad $=$ \qquad $=$ \qquad
c) Isha is using a different method. She has partitioned the whole and the fraction to multiply them separately. Complete her calculation, giving the answer in its simplest form.
$3 \times 4=$ \qquad

\square $+$ \qquad $=$
d) Vicky converted the mixed number to an improper fraction to multiply. Show her calculation, giving the answer in its simplest form.
2) Now choose a method to answer each question.
a) $2 \frac{3}{5} \times 2=$
b) $4 \times 1 \frac{3}{4}=$
3) Match the calculation to the correct answer.
$3 \frac{1}{3} \times 4$

4) Ted is making bubble mixture for his bubble machine. To make one portion, he mixes $2 \frac{1}{4}$ litres of water with $4 \frac{2}{3}$ tablespoons of washing-up liquid.

Ted makes one portion of bubble mixture for himself and one each for his three friends.
a) How much water will he need? \square
b) How many tablespoons of washing-up liquid will he need? \square
\square
2) Complete the statements using the symbols $<$, $>$ or $=$.
a) $2 \frac{3}{5} \times 3 \longrightarrow 2 \frac{5}{10} \times 4$
b) $4 \frac{3}{4} \times 2$
 $3 \frac{5}{6} \times 3$
c) $2 \frac{3}{4} \times 4$ \square $5 \frac{1}{4} \times 2$

1) What could the value of the missing digits be? Find two possible solutions.

\square
2) On average, a shallower bath uses $72 \frac{3}{8}$ litres of water, whereas a deeper bath uses $80 \frac{3}{4}$ litres of water.

In one year, how much more water would always taking a deep bath use than always taking a shallow bath, if someone had 3 baths a week?

Show your working out.
\square
Taking a deep bath would use \qquad more litres of water than taking a shallow bath.
3) Write a problem that involves multiplying mixed numbers for your partner to solve.
\qquad
\qquad
\qquad

1) Class 5 are exploring different methods of multiplying mixed numbers.

a) Shade the bar models to represent $3 \frac{2}{3} \times 4$.

b) Complete Theo's repeated addition calculation, giving the answer in its simplest form.
$3 \frac{2}{3} \times 4=$ \qquad $+$ \qquad $+$ \qquad $+$
\qquad $=$ \qquad $=$ \qquad
c) Isha is using a different method. She has partitioned the whole and the fraction to multiply them separately. Complete her calculation, giving the answer in its simplest form.

d) Vicky converted the mixed number to an improper fraction to multiply. Show her calculation, giving the answer in its simplest form.
2) Now choose a method to answer each question.
a) $2 \frac{3}{5} \times 2=$
b) $4 \times 1 \frac{3}{4}=$
3) Match the calculation to the correct answer.

| $3 \frac{1}{3} \times 4$ | $3 \times 4 \frac{1}{4}$ |
| :--- | :--- | $2 \frac{2}{5} \times 3 \quad 2 \frac{3}{5} \times 3$

1) Class 5 are exploring different methods of multiplying mixed numbers.
a) Shade the bar models to represent $3 \frac{2}{3} \times 4$.

b) Complete Theo's repeated addition calculation, giving the answer in its simplest form.

c) Isha is using a different method. She has partitioned the whole and the fraction to multiply them separately. Complete her calculation, giving the answer in its simplest form.

d) Vicky converted the mixed number to an improper fraction to multiply. Show her calculation, giving the answer in its simplest form.
2) Now choose a method to answer each question.
a) $2 \frac{3}{5} \times 2=$
b) $4 \times 1 \frac{3}{4}=$
3) Match the calculation to the correct answer.

4) Ted is making bubble mixture for his bubble machine. To make one portion, he mixes $2 \frac{1}{4}$ litres of water with $4 \frac{2}{3}$ tablespoons of washing-up liquid.

Ted makes one portion of bubble mixture for himself and one each for his three friends.
a) How much water will he need?
b) How many tablespoons of washing-up liquid will he need?
2) Complete the statements using the symbols <, > or $=$.
a) $2 \frac{3}{5} \times 3$
 $2 \frac{5}{10} \times 4$
b) $4 \frac{3}{4} \times 2$
 $3 \frac{5}{6} \times 3$
c) $2 \frac{3}{4} \times 4$
 $5 \frac{1}{4} \times 2$

1) Ted is making bubble mixture for his bubble machine. To make one portion, he mixes $2 \frac{1}{4}$ litres of water with $4 \frac{2}{3}$ tablespoons of washing-up liquid.

Ted makes one portion of bubble mixture for himself and one each for his three friends.
a) How much water will he need?
b) How many tablespoons of washing-up liquid will he need?
2) Complete the statements using the symbols <, > or $=$.
a) $2 \frac{3}{5} \times 3 \longrightarrow 2 \frac{5}{10} \times 4$

a) $2 \frac{3}{5} \times 3 \longrightarrow 2 \frac{5}{10} \times 4$
b) $4 \frac{3}{4} \times 2$

$3 \frac{5}{6} \times 3$
C) $2 \frac{3}{4} \times 4$ $5 \frac{1}{4} \times 2$

1) What could the value of the missing digits be? Find two possible solutions.

On average, a shallower bath uses $72 \frac{3}{8}$ litres of water, whereas a deeper bath uses $80 \frac{3}{4}$ litres of water.

In one year, how much more water would always taking a deep bath use than always taking a shallow bath, if someone had 3 baths a week?

Show your working out.
Taking a deep bath would use \qquad more litres of water than taking a shallow bath.
3) Write a problem that involves multiplying a mixed number for your partner to solve.

1) What could the value of the missing digits be? Find two possible solutions.

2) On average, a shallower bath uses $72 \frac{3}{8}$ litres of water, whereas a deeper bath uses $80 \frac{3}{4}$ litres of water.

In one year, how much more water would always taking a deep bath use than always taking a shallow bath, if someone had 3 baths a week?

Show your working out.
Taking a deep bath would use \qquad more litres of water than taking a shallow bath.
3) Write a problem that involves multiplying a mixed number for your partner to solve.

Fractions | Bubble Blast

I can multiply mixed numbers by whole numbers.		
I can show that multiplication is the same as repeated addition.		
I can use fraction diagrams to multiply fractions by whole numbers.		
I can convert between improper fractions and mixed numbers.		

Fractions | Bubble Blast

I can multiply mixed numbers by whole numbers.		
I can show that multiplication is the same as repeated addition.		
I can use fraction diagrams to multiply fractions by whole numbers.		
I can convert between improper fractions and mixed numbers.		

Fractions | Bubble Blast

I can multiply mixed numbers by whole numbers.		
I can show that multiplication is the same as repeated addition.		
I can use fraction diagrams to multiply fractions by whole numbers.		
I can convert between improper fractions and mixed numbers.		

Fractions | Bubble Blast

I can multiply mixed numbers by whole numbers.		
I can show that multiplication is the same as repeated addition.		
I can use fraction diagrams to multiply fractions by whole numbers.		
I can convert between improper fractions and mixed numbers.		

Fractions | Bubble Blast

I can multiply mixed numbers by whole numbers.		
I can show that multiplication is the same as repeated addition.		
I can use fraction diagrams to multiply fractions by whole numbers.		
I can convert between improper fractions and mixed numbers.		

Fractions | Bubble Blast

I can multiply mixed numbers by whole numbers.		
I can show that multiplication is the same as repeated addition.		
I can use fraction diagrams to multiply fractions by whole numbers.		
I can convert between improper fractions and mixed numbers.		

Fractions | Bubble Blast

I can multiply mixed numbers by whole numbers.		
I can show that multiplication is the same as repeated addition.		
I can use fraction diagrams to multiply fractions by whole numbers.		
I can convert between improper fractions and mixed numbers.		

Fractions | Bubble Blast

I can multiply mixed numbers by whole numbers.

I can show that multiplication is the same as repeated addition.

I can use fraction diagrams to multiply fractions by whole numbers.

I can convert between improper fractions and mixed numbers.

